Multiple Views in Ensembles of Nearest Neighbor Classifiers

نویسندگان

  • Oleg Okun
  • Helen Priisalu
چکیده

Multi-view classification is a machine learning methodology when patterns or objects of interest are represented by a set of different views (sets of features) rather than the union of all views. In this paper, multiple views are employed in ensembles of nearest neighbor classifiers where they demonstrate promising results in classifying a challenging data set of protein folds. In particular, up to 4.68% increase in accuracy can be achieved, compared to the best result in single-view classification, thus rendering ensembles of nearest neighbor classifiers employing multiple views an attractive research direction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest Neighbor Ensembles Combines with Weighted Instance and Feature Sub Set Selection: A Survey

Ensemble learning deals with methods which employ multiple learners to solve a problem The generalization ability of an ensemble is usually significantly better than that of a single learner, so ensemble methods are very attractive, at the same time feature selection process of ensemble technique has important role of classifier. This paper, presents the analysis on classification technique of ...

متن کامل

New Neighborhood Based Classification Rules for Metric Spaces and Their Use in Ensemble Classification

The k-nearest-neighbor rule is a well known pattern recognition technique with very good results in a great variety of real classification tasks. Based on the neighborhood concept, several classification rules have been proposed to reduce the error rate of the k-nearest-neighbor rule (or its time requirements). In this work, two new geometrical neighborhoods are defined and the classification r...

متن کامل

Prototype reduction techniques: A comparison among different approaches

The main two drawbacks of nearest neighbor based classifiers are: high CPU costs when the number of samples in the training set is high and performance extremely sensitive to outliers. Several attempts of overcoming such drawbacks have been proposed in the pattern recognition field aimed at selecting/gen-erating an adequate subset of prototypes from the training set. The problem addressed in th...

متن کامل

Neural Network Ensembles from Training Set Expansions

In this work we propose a new method to create neural network ensembles. Our methodology develops over the conventional technique of bagging, where multiple classifiers are trained using a single training data set by generating multiple bootstrap samples from the training data. We propose a new method of sampling using the k-nearest neighbor density estimates. Our sampling technique gives rise ...

متن کامل

Computer Aided Diagnosis of CT Focal Liver Lesions based on Texture Features, Feature Selection and Ensembles of Classifiers

A computer aided diagnosis system aiming to classify liver tissue from computed tomography images is presented. For each region of interest five distinct sets of texture features were extracted. Two different ensembles of classifiers were constructed and compared. The first one consists of five Neural Networks (NNs), each using as input either one of the computed texture feature sets or its red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005